Solution representations for a wave equation with weak dissipation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution Representations for a Wave Equation with Weak Dissipation

parameterized by μ > 0, and prove a representation theorem for its solutions using the theory of special functions. This representation is used to obtain Lp–Lq estimates for the solution and for the energy operator corresponding to this Cauchy problem. Especially for the L2 energy estimate we determine the part of the phase space which is responsible for the decay rate. It will be shown that th...

متن کامل

Modified scattering for a wave equation with weak dissipation

We consider the Cauchy problem for the weakly dissipative wave equation u+ μ 1 + t ut = 0 with parameter μ ≥ 2. Based on the explicit representations of solutions provided in [Math. Meth. Appl. Sci. 2004; 27:101-124] sharp decay estimates for data from a dense subspace of the energy space are derived. Furthermore, sharpness is discussed in terms of a modified scattering theory. AMS subject clas...

متن کامل

A Wave Equation Associated with Mixed Nonhomogeneous Conditions: The Compactness and Connectivity of Weak Solution Set

The purpose of this paper is to show that the set of weak solutions of the initial-boundary value problem for the linear wave equation is nonempty, connected, and compact. under the Creative Commons Attribution License, which permits unrestricted use, distribution , and reproduction in any medium, provided the original work is properly cited.

متن کامل

Numerical solution of the wave equation using shearlet frames

In this paper, using shearlet frames, we present a numerical  method  for solving  the wave equation. We define a new shearlet system and by the Plancherel theorem, we calculate the shearlet coefficients.

متن کامل

Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation

The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods in the Applied Sciences

سال: 2003

ISSN: 0170-4214,1099-1476

DOI: 10.1002/mma.446